
1Introduction

The first electronic computers were monstrous contraptions, filling
several rooms, consuming as much electricity as a good-size factory, and costing
millions of 1940s dollars (but with the computing power of a modern hand-held
calculator). The programmers who used these machines believed that the com-
puter’s time was more valuable than theirs. They programmed in machine lan-
guage. Machine language is the sequence of bits that directly controls a processor,
causing it to add, compare, move data from one place to another, and so forth at
appropriate times. Specifying programs at this level of detail is an enormously te-
dious task. The following program calculates the greatest common divisor (GCD)EXAMPLE 1.1

GCD program in MIPS
machine language

of two integers, using Euclid’s algorithm. It is written in machine language, ex-
pressed here as hexadecimal (base 16) numbers, for the MIPS R4000 processor.

27bdffd0 afbf0014 0c1002a8 00000000 0c1002a8 afa2001c 8fa4001c

00401825 10820008 0064082a 10200003 00000000 10000002 00832023

00641823 1483fffa 0064082a 0c1002b2 00000000 8fbf0014 27bd0020

03e00008 00001025 �
As people began to write larger programs, it quickly became apparent that

a less error-prone notation was required. Assembly languages were invented to
allow operations to be expressed with mnemonic abbreviations. Our GCD pro-EXAMPLE 1.2

GCD program in MIPS
assembler

gram looks like this in MIPS assembly language:

addiu sp,sp,-32

sw ra,20(sp) b C

jal getint subu a0,a0,v1

nop B: subu v1,v1,a0

jal getint C: bne a0,v1,A

sw v0,28(sp) slt at,v1,a0

lw a0,28(sp) D: jal putint

move v1,v0 nop

beq a0,v0,D lw ra,20(sp)

slt at,v1,a0 addiu sp,sp,32

A: beq at,zero,B jr ra

nop move v0,zero �
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4 Chapter 1 Introduction

Assembly languages were originally designed with a one-to-one correspon-
dence between mnemonics and machine language instructions, as shown in this
example.1 Translating from mnemonics to machine language became the job
of a systems program known as an assembler. Assemblers were eventually aug-
mented with elaborate “macro expansion” facilities to permit programmers to
define parameterized abbreviations for common sequences of instructions. The
correspondence between assembly language and machine language remained ob-
vious and explicit, however. Programming continued to be a machine-centered
enterprise: each different kind of computer had to be programmed in its own as-
sembly language, and programmers thought in terms of the instructions that the
machine would actually execute.

As computers evolved, and as competing designs developed, it became in-
creasingly frustrating to have to rewrite programs for every new machine. It also
became increasingly difficult for human beings to keep track of the wealth of
detail in large assembly language programs. People began to wish for a machine-
independent language, particularly one in which numerical computations (the
most common type of program in those days) could be expressed in something
more closely resembling mathematical formulae. These wishes led in the mid-
1950s to the development of the original dialect of Fortran, the first arguably
high-level programming language. Other high-level languages soon followed,
notably Lisp and Algol.

Translating from a high-level language to assembly or machine language is the
job of a systems program known as a compiler. Compilers are substantially more
complicated than assemblers because the one-to-one correspondence between
source and target operations no longer exists when the source is a high-level
language. Fortran was slow to catch on at first, because human programmers,
with some effort, could almost always write assembly language programs that
would run faster than what a compiler could produce. Over time, however, the
performance gap has narrowed and eventually reversed. Increases in hardware
complexity (due to pipelining, multiple functional units, etc.) and continuing
improvements in compiler technology have led to a situation in which a state-of-
the-art compiler will usually generate better code than a human being will. Even
in cases in which human beings can do better, increases in computer speed and
program size have made it increasingly important to economize on program-
mer effort, not only in the original construction of programs, but in subsequent
program maintenance—enhancement and correction. Labor costs now heavily
outweigh the cost of computing hardware.

1 Each of the 23 lines of assembly code in the example is encoded in the corresponding 32 bits of
the machine language. Note for example that the two sw (store word) instructions begin with
the same 11 bits (afa or afb). Those bits encode the operation (sw) and the base register (sp).
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1.1 The Art of Language Design 5

1.1 The Art of Language Design

Today there are thousands of high-level programming languages, and new ones
continue to emerge. Human beings use assembly language only for special pur-
pose applications. In a typical undergraduate class, it is not uncommon to find
users of scores of different languages. Why are there so many? There are several
possible answers:

Evolution. Computer science is a young discipline; we’re constantly finding bet-
ter ways to do things. The late 1960s and early 1970s saw a revolution in “struc-
tured programming,” in which the go to-based control flow of languages like
Fortran, Cobol, and Basic2 gave way to while loops, case statements, and
similar higher-level constructs. In the late 1980s the nested block structure of
languages like Algol, Pascal, and Ada began to give way to the object-oriented
structure of Smalltalk, C++, Eiffel, and the like.

Special Purposes. Many languages were designed for a specific problem domain.
The various Lisp dialects are good for manipulating symbolic data and com-
plex data structures. Snobol and Icon are good for manipulating character
strings. C is good for low-level systems programming. Prolog is good for rea-
soning about logical relationships among data. Each of these languages can be
used successfully for a wider range of tasks, but the emphasis is clearly on the
specialty.

Personal Preference. Different people like different things. Much of the parochi-
alism of programming is simply a matter of taste. Some people love the terse-
ness of C; some hate it. Some people find it natural to think recursively; others
prefer iteration. Some people like to work with pointers; others prefer the im-
plicit dereferencing of Lisp, Clu, Java, and ML. The strength and variety of
personal preference make it unlikely that anyone will ever develop a univer-
sally acceptable programming language.

Of course, some languages are more successful than others. Of the many that
have been designed, only a few dozen are widely used. What makes a language
successful? Again there are several answers:

Expressive Power. One commonly hears arguments that one language is more
“powerful” than another, though in a formal mathematical sense they are all
Turing equivalent—each can be used, if awkwardly, to implement arbitrary al-
gorithms. Still, language features clearly have a huge impact on the program-
mer’s ability to write clear, concise, and maintainable code, especially for very

2 The name of each of these languages is sometimes written entirely in uppercase letters and some-
times in mixed case. For consistency’s sake, I adopt the convention in this book of using mixed
case for languages whose names are pronounced as words (e.g., Fortran, Cobol, Basic) and up-
percase for those pronounced as a series of letters (e.g., APL, PL/I, ML).
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6 Chapter 1 Introduction

large systems. There is no comparison, for example, between early versions of
Basic on the one hand and Common Lisp or Ada on the other. The factors
that contribute to expressive power—abstraction facilities in particular—are a
major focus of this book.

Ease of Use for the Novice. While it is easy to pick on Basic, one cannot deny its
success. Part of that success is due to its very low “learning curve.” Logo is pop-
ular among elementary-level educators for a similar reason: even a 5-year-old
can learn it. Pascal was taught for many years in introductory programming
language courses because, at least in comparison to other “serious” languages,
it is compact and easy to learn. In recent years Java has come to play a similar
role. Though substantially more complex than Pascal, it is much simpler than,
say, C++.

Ease of Implementation. In addition to its low learning curve, Basic is success-
ful because it could be implemented easily on tiny machines, with limited
resources. Forth has a small but dedicated following for similar reasons. Ar-
guably the single most important factor in the success of Pascal was that its
designer, Niklaus Wirth, developed a simple, portable implementation of the
language, and shipped it free to universities all over the world (see Exam-
ple 1.12).3 The Java designers have taken similar steps to make their language
available for free to almost anyone who wants it.

Open Source. Most programming languages today have at least one open source
compiler or interpreter, but some languages—C in particular—are much
more closely associated than others with freely distributed, peer reviewed,
community supported computing. C was originally developed in the early
1970s by Dennis Ritchie and Ken Thompson at Bell Labs,4 in conjunction
with the design of the original Unix operating system. Over the years Unix
evolved into the world’s most portable operating system—the OS of choice
for academic computer science—and C was closely associated with it. With
the standardization of C, the language has become available on an enormous
variety of additional platforms. Linux, the leading open source operating sys-
tem, is written in C. As of March 2005, C and its descendants account for 60%
of the projects hosted at sourceforge.net.

Excellent Compilers. Fortran owes much of its success to extremely good com-
pilers. In part this is a matter of historical accident. Fortran has been around
longer than anything else, and companies have invested huge amounts of time

3 Niklaus Wirth (1934–), Professor Emeritus of Informatics at ETH in Zürich, Switzerland, is
responsible for a long line of influential languages, including Euler, Algol-W, Pascal, Modula,
Modula-2, and Oberon. Among other things, his languages introduced the notions of enumera-
tion, subrange, and set types, and unified the concepts of records (structs) and variants (unions).
He received the annual ACM Turing Award, computing’s highest honor, in 1984.

4 Ken Thompson (1943–) led the team that developed Unix. He also designed the B program-
ming language, a child of BCPL and the parent of C. Dennis Ritchie (1941–) was the principal
force behind the development of C itself. Thompson and Ritchie together formed the core of an
incredibly productive and influential group. They shared the ACM Turing Award in 1983.
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1.1 The Art of Language Design 7

and money in making compilers that generate very fast code. It is also a matter
of language design, however: Fortran dialects prior to Fortran 90 lack recur-
sion and pointers, features that greatly complicate the task of generating fast
code (at least for programs that can be written in a reasonable fashion without
them!). In a similar vein, some languages (e.g., Common Lisp) are successful
in part because they have compilers and supporting tools that do an unusually
good job of helping the programmer manage very large projects.

Economics, Patronage, and Inertia. Finally, there are factors other than technical
merit that greatly influence success. The backing of a powerful sponsor is one.
Cobol and PL/I, at least to first approximation, owe their life to IBM. Ada
owes its life to the United States Department of Defense: it contains a wealth
of excellent features and ideas, but the sheer complexity of implementation
would likely have killed it if not for the DoD backing. Similarly, C#, despite its
technical merits, would probably not have received the attention it has without
the backing of Microsoft. At the other end of the life cycle, some languages
remain widely used long after “better” alternatives are available because of a
huge base of installed software and programmer expertise, which would cost
too much to replace.

DESIGN & IMPLEMENTATION

Introduction
Throughout the book, sidebars like this one will highlight the interplay of lan-
guage design and language implementation. Among other things, we will con-
sider the following.

� Cases (such as those mentioned in this section) in which ease or difficulty
of implementation significantly affected the success of a language

� Language features that many designers now believe were mistakes, at least
in part because of implementation difficulties

� Potentially useful features omitted from some languages because of concern
that they might be too difficult or slow to implement

� Language limitations adopted at least in part out of concern for implemen-
tation complexity or cost

� Language features introduced at least in part to facilitate efficient or elegant
implementations

� Cases in which a machine architecture makes reasonable features unreason-
ably expensive

� Various other tradeoffs in which implementation plays a significant role

A complete list of sidebars appears in Appendix B.

 EBSCOhost - printed on 4/3/2022 4:20 PM via BIBLIOTECA DIGITAL ITESM SISTEMA. All use subject to https://www.ebsco.com/terms-of-use



8 Chapter 1 Introduction

Clearly no one factor determines whether a language is “good.” As we study
programming languages, we shall need to consider issues from several points of
view. In particular, we shall need to consider the viewpoints of both the pro-
grammer and the language implementor. Sometimes these points of view will be
in harmony, as in the desire for execution speed. Often, however, there will be
conflicts and tradeoffs, as the conceptual appeal of a feature is balanced against
the cost of its implementation. The tradeoff becomes particularly thorny when
the implementation imposes costs not only on programs that use the feature, but
also on programs that do not.

In the early days of computing the implementor’s viewpoint was predominant.
Programming languages evolved as a means of telling a computer what to do. For
programmers, however, a language is more aptly defined as a means of express-
ing algorithms. Just as natural languages constrain exposition and discourse, so
programming languages constrain what can and cannot be expressed, and have
both profound and subtle influence over what the programmer can think. Donald
Knuth has suggested that programming be regarded as the art of telling another
human being what one wants the computer to do [Knu84].5 This definition per-
haps strikes the best sort of compromise. It acknowledges that both conceptual
clarity and implementation efficiency are fundamental concerns. This book at-
tempts to capture this spirit of compromise by simultaneously considering the
conceptual and implementation aspects of each of the topics it covers.

1.2 The Programming Language Spectrum

The many existing languages can be classified into families based on their modelEXAMPLE 1.3
Classification of
programming languages

of computation. Figure 1.1 shows a common set of families. The top-level di-
vision distinguishes between the declarative languages, in which the focus is on
what the computer is to do, and the imperative languages, in which the focus is
on how the computer should do it. �

Declarative languages are in some sense “higher level”; they are more in tune
with the programmer’s point of view, and less with the implementor’s point of
view. Imperative languages predominate, however, mainly for performance rea-
sons. There is a tension in the design of declarative languages between the desire
to get away from “irrelevant” implementation details and the need to remain
close enough to the details to at least control the outline of an algorithm. The de-
sign of efficient algorithms, after all, is what much of computer science is about.

5 Donald E. Knuth (1938–), Professor Emeritus at Stanford University and one of the foremost
figures in the design and analysis of algorithms, is also widely known as the inventor of the
TEX typesetting system (with which this book was produced) and of the literate programming
methodology with which TEX was constructed. His multivolume The Art of Computer Program-
ming has an honored place on the shelf of most professional computer scientists. He received the
ACM Turing Award in 1974.
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1.2 The Programming Language Spectrum 9

declarative
functional Lisp/Scheme, ML, Haskell
dataflow Id, Val
logic, constraint-based Prolog, spreadsheets
template-based XSLT

imperative
von Neumann C, Ada, Fortran, . . .

scripting Perl, Python, PHP, . . .
object-oriented Smalltalk, Eiffel, C++, Java, . . .

Figure 1.1 Classification of programming languages. Note that the categories are fuzzy and
open to debate. In particular, it is possible for a functional language to be object-oriented, and
many authors do not consider functional programming to be declarative.

It is not yet clear to what extent, and in what problem domains, we can expect
compilers to discover good algorithms for problems stated at a very high level. In
any domain in which the compiler cannot find a good algorithm, the program-
mer needs to be able to specify one explicitly.

Within the declarative and imperative families, there are several important
subclasses.

� Functional languages employ a computational model based on the recursive
definition of functions. They take their inspiration from the lambda calculus,
a formal computational model developed by Alonzo Church in the 1930s. In
essence, a program is considered a function from inputs to outputs, defined
in terms of simpler functions through a process of refinement. Languages in
this category include Lisp, ML, and Haskell.

� Dataflow languages model computation as the flow of information (tokens)
among primitive functional nodes. They provide an inherently parallel model:
nodes are triggered by the arrival of input tokens, and can operate concur-
rently. Id and Val are examples of dataflow languages. Sisal, a descendant of
Val, is more often described as a functional language.

� Logic or constraint-based languages take their inspiration from predicate logic.
They model computation as an attempt to find values that satisfy certain spec-
ified relationships, using a goal-directed a search through a list of logical rules.
Prolog is the best-known logic language. The term can also be applied to the
programmable aspects of spreadsheet systems such as Excel, VisiCalc, or Lo-
tus 1-2-3.

� The von Neumann languages are the most familiar and successful. They in-
clude Fortran, Ada 83, C, and all of the others in which the basic means of
computation is the modification of variables.6 Whereas functional languages

6 John von Neumann (1903–1957) was a mathematician and computer pioneer who helped to
develop the concept of stored program computing, which underlies most computer hardware. In
a stored program computer, both programs and data are represented as bits in memory, which
the processor repeatedly fetches, interprets, and updates.
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10 Chapter 1 Introduction

are based on expressions that have values, von Neumann languages are based
on statements (assignments in particular) that influence subsequent compu-
tation via the side effect of changing the value of memory.

� Scripting languages are a subset of the von Neumann languages. They are dis-
tinguished by their emphasis on “gluing together” components that were orig-
inally developed as independent programs. Several scripting languages were
originally developed for specific purposes: csh and bash, for example, are
the input languages of job control (shell) programs; Awk was intended for
text manipulation; PHP and JavaScript are primarily intended for the gener-
ation of web pages with dynamic content (with execution on the server and
the client, respectively). Other languages, including Perl, Python, Ruby, and
Tcl, are more deliberately general purpose. Most place an emphasis on rapid
prototyping, with a bias toward ease of expression over speed of execution.

� Object-oriented languages are comparatively recent, though their roots can be
traced to Simula 67. Most are closely related to the von Neumann languages
but have a much more structured and distributed model of both memory and
computation. Rather than picture computation as the operation of a mono-
lithic processor on a monolithic memory, object-oriented languages picture
it as interactions among semi-independent objects, each of which has both its
own internal state and subroutines to manage that state. Smalltalk is the purest
of the object-oriented languages; C++ and Java are the most widely used. It is
also possible to devise object-oriented functional languages (the best known
of these is the CLOS [Kee89] extension to Common Lisp), but they tend to
have a strong imperative flavor.

One might suspect that concurrent languages also form a separate class (and
indeed this book devotes a chapter to the subject), but the distinction between
concurrent and sequential execution is mostly orthogonal to the classifications
above. Most concurrent programs are currently written using special library
packages or compilers in conjunction with a sequential language such as For-
tran or C. A few widely used languages, including Java, C#, Ada, and Modula-3,
have explicitly concurrent features. Researchers are investigating concurrency in
each of the language classes mentioned here.

It should be emphasized that the distinctions among language classes are
not clear-cut. The division between the von Neumann and object-oriented lan-
guages, for example, is often very fuzzy, and most of the functional and logic lan-
guages include some imperative features. The preceding descriptions are meant
to capture the general flavor of the classes, without providing formal defini-
tions.

Imperative languages—von Neumann and object-oriented—receive the bulk
of the attention in this book. Many issues cut across family lines, however, and
the interested reader will discover much that is applicable to alternative com-
putational models in most of the chapters of the book. Chapters 10 through 13
contain additional material on functional, logic, concurrent, and scripting lan-
guages.
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1.3 Why Study Programming Languages? 11

1.3 Why Study Programming Languages?

Programming languages are central to computer science and to the typical com-
puter science curriculum. Like most car owners, students who have become fa-
miliar with one or more high-level languages are generally curious to learn about
other languages, and to know what is going on “under the hood.” Learning about
languages is interesting. It’s also practical.

For one thing, a good understanding of language design and implementation
can help one choose the most appropriate language for any given task. Most
languages are better for some things than for others. No one would be likely
to use APL for symbolic computing or string processing, but other choices are
not nearly so clear-cut. Should one choose C, C++, or Modula-3 for systems
programming? Fortran or Ada for scientific computations? Ada or Modula-2 for
embedded systems? Visual Basic or Java for a graphical user interface? This book
should help equip you to make such decisions.

Similarly, this book should make it easier to learn new languages. Many lan-
guages are closely related. Java and C# are easier to learn if you already know C++.
Common Lisp is easier to learn if you already know Scheme. More important,
there are basic concepts that underlie all programming languages. Most of these
concepts are the subject of chapters in this book: types, control (iteration, selec-
tion, recursion, nondeterminacy, concurrency), abstraction, and naming. Think-
ing in terms of these concepts makes it easier to assimilate the syntax (form)
and semantics (meaning) of new languages, compared to picking them up in
a vacuum. The situation is analogous to what happens in natural languages: a
good knowledge of grammatical forms makes it easier to learn a foreign lan-
guage.

Whatever language you learn, understanding the decisions that went into its
design and implementation will help you use it better. This book should help you

Understand obscure features. The typical C++ programmer rarely uses unions,
multiple inheritance, variable numbers of arguments, or the .* operator. (If
you don’t know what these are, don’t worry!) Just as it simplifies the assim-
ilation of new languages, an understanding of basic concepts makes it eas-
ier to understand these features when you look up the details in the man-
ual.

Choose among alternative ways to express things, based on a knowledge of im-
plementation costs. In C++, for example, programmers may need to avoid un-
necessary temporary variables, and use copy constructors whenever possible,
to minimize the cost of initialization. In Java they may wish to use Executor
objects rather than explicit thread creation. With certain (poor) compilers,
they may need to adopt special programming idioms to get the fastest code:
pointers for array traversal in C; with statements to factor out common ad-
dress calculations in Pascal or Modula-3; x*x instead of x**2 in Basic. In any

 EBSCOhost - printed on 4/3/2022 4:20 PM via BIBLIOTECA DIGITAL ITESM SISTEMA. All use subject to https://www.ebsco.com/terms-of-use



12 Chapter 1 Introduction

language, they need to be able to evaluate the tradeoffs among alternative im-
plementations of abstractions—for example between computation and table
lookup for functions like bit set cardinality, which can be implemented either
way.

Make good use of debuggers, assemblers, linkers, and related tools. In general, the
high-level language programmer should not need to bother with implementa-
tion details. There are times, however, when an understanding of those details
proves extremely useful. The tenacious bug or unusual system-building prob-
lem is sometimes a lot easier to handle if one is willing to peek at the bits.

Simulate useful features in languages that lack them. Certain very useful features
are missing in older languages but can be emulated by following a deliberate
(if unenforced) programming style. In older dialects of Fortran, for exam-
ple, programmers familiar with modern control constructs can use comments
and self-discipline to write well-structured code. Similarly, in languages with
poor abstraction facilities, comments and naming conventions can help imi-
tate modular structure, and the extremely useful iterators of Clu, Icon, and C#
(which we will study in Section 6.5.3) can be imitated with subroutines and
static variables. In Fortran 77 and other languages that lack recursion, an iter-
ative program can be derived via mechanical hand transformations, starting
with recursive pseudocode. In languages without named constants or enumer-
ation types, variables that are initialized once and never changed thereafter can
make code much more readable and easy to maintain.

Make better use of language technology wherever it appears. Most programmers
will never design or implement a conventional programming language, but
most will need language technology for other programming tasks. The typical
personal computer contains files in dozens of structured formats, encompass-
ing web content, word processing, spreadsheets, presentations, raster and vec-
tor graphics, music, video, databases, and a wide variety of other application
domains. Each of these structured formats has formal syntax and semantics,
which tools must understand. Code to parse, analyze, generate, optimize, and
otherwise manipulate structured data can thus be found in almost any sophis-
ticated program, and all of this code is based on language technology. Pro-
grammers with a strong grasp of this technology will be in a better position to
write well-structured, maintainable tools.

In a similar vein, most tools themselves can be customized, via start-up
configuration files, command-line arguments, input commands, or built-in
extension languages (considered in more detail in Chapter 13). My home di-
rectory holds more than 250 separate configuration (“preference”) files. My
personal configuration files for the emacs text editor comprise more than
1200 lines of Lisp code. The user of almost any sophisticated program today
will need to make good use of configuration or extension languages. The de-
signers of such a program will need either to adopt (and adapt) some existing
extension language, or to invent new notation of their own. Programmers with
a strong grasp of language theory will be in a better position to design elegant,

 EBSCOhost - printed on 4/3/2022 4:20 PM via BIBLIOTECA DIGITAL ITESM SISTEMA. All use subject to https://www.ebsco.com/terms-of-use



1.4 Compilation and Interpretation 13

well-structured notation that meets the needs of current users and facilitates
future development.

Finally, this book should help prepare you for further study in language de-
sign or implementation, should you be so inclined. It will also equip you to un-
derstand the interactions of languages with operating systems and architectures,
should those areas draw your interest.

CHECK YOUR UNDERSTANDING

1. What is the difference between machine language and assembly language?

2. In what way(s) are high-level languages an improvement on assembly lan-
guage? In what circumstances does it still make sense to program in assem-
bler?

3. Why are there so many programming languages?

4. What makes a programming language successful?

5. Name three languages in each of the following categories: von Neumann,
functional, object-oriented. Name two logic languages. Name two widely
used concurrent languages.

6. What distinguishes declarative languages from imperative languages?

7. What organization spearheaded the development of Ada?

8. What is generally considered the first high-level programming language?

9. What was the first functional language?

1.4 Compilation and Interpretation

At the highest level of abstraction, the compilation and execution of a programEXAMPLE 1.4
Pure compilation in a high-level language look something like this:
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14 Chapter 1 Introduction

The compiler translates the high-level source program into an equivalent target
program (typically in machine language) and then goes away. At some arbitrary
later time, the user tells the operating system to run the target program. The com-
piler is the locus of control during compilation; the target program is the locus of
control during its own execution. The compiler is itself a machine language pro-
gram, presumably created by compiling some other high-level program. When
written to a file in a format understood by the operating system, machine lan-
guage is commonly known as object code. �

An alternative style of implementation for high-level languages is known asEXAMPLE 1.5
Pure interpretation interpretation.

Unlike a compiler, an interpreter stays around for the execution of the appli-
cation. In fact, the interpreter is the locus of control during that execution. In
effect, the interpreter implements a virtual machine whose “machine language”
is the high-level programming language. The interpreter reads statements in that
language more or less one at a time, executing them as it goes along. �

In general, interpretation leads to greater flexibility and better diagnostics (er-
ror messages) than does compilation. Because the source code is being executed
directly, the interpreter can include an excellent source-level debugger. It can also
cope with languages in which fundamental characteristics of the program, such
as the sizes and types of variables, or even which names refer to which variables,
can depend on the input data. Some language features are almost impossible to
implement without interpretation: in Lisp and Prolog, for example, a program
can write new pieces of itself and execute them on the fly. (Several scripting lan-
guages, including Perl, Tcl, Python, and Ruby, also provide this capability.) De-
laying decisions about program implementation until run time is known as late
binding; we will discuss it at greater length in Section 3.1.

Compilation, by contrast, generally leads to better performance. In general, a
decision made at compile time is a decision that does not need to be made at run
time. For example, if the compiler can guarantee that variable x will always lie at
location 49378, it can generate machine language instructions that access this lo-
cation whenever the source program refers to x. By contrast, an interpreter may
need to look x up in a table every time it is accessed, in order to find its location.
Since the (final version of a) program is compiled only once, but generally exe-
cuted many times, the savings can be substantial, particularly if the interpreter is
doing unnecessary work in every iteration of a loop.

While the conceptual difference between compilation and interpretation isEXAMPLE 1.6
Mixing compilation and
interpretation

clear, most language implementations include a mixture of both. They typically
look like this:
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1.4 Compilation and Interpretation 15

We generally say that a language is “interpreted” when the initial translator is
simple. If the translator is complicated, we say that the language is “compiled.”
The distinction can be confusing because “simple” and “complicated” are sub-
jective terms, and because it is possible for a compiler (complicated translator)
to produce code that is then executed by a complicated virtual machine (in-
terpreter); this is in fact precisely what happens by default in Java. We still say
that a language is compiled if the translator analyzes it thoroughly (rather than
effecting some “mechanical” transformation) and if the intermediate program
does not bear a strong resemblance to the source. These two characteristics—
thorough analysis and nontrivial transformation—are the hallmarks of compil-
ation. �

In practice one sees a broad spectrum of implementation strategies. For ex-
ample:

� Most interpreted languages employ an initial translator (a preprocessor) thatEXAMPLE 1.7
Preprocessing removes comments and white space, and groups characters together into to-

kens, such as keywords, identifiers, numbers, and symbols. The translator may
also expand abbreviations in the style of a macro assembler. Finally, it may
identify higher-level syntactic structures, such as loops and subroutines. The
goal is to produce an intermediate form that mirrors the structure of the
source but can be interpreted more efficiently. �

DESIGN & IMPLEMENTATION

Compiled and interpreted languages
Certain languages (APL and Smalltalk, for example) are sometimes referred
to as “interpreted languages” because most of their semantic error checking
must be performed at run time. Certain other languages (Fortran and C, for
example) are sometimes referred to as “compiled languages” because almost
all of their semantic error checking can be performed statically. This termi-
nology isn’t strictly correct: interpreters for C and Fortran can be built easily,
and a compiler can generate code to perform even the most extensive dynamic
semantic checks. That said, language design has a profound effect on “compi-
lability.”
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16 Chapter 1 Introduction

In some very early implementations of Basic, the manual actually suggested
removing comments from a program in order to improve its performance.
These implementations were pure interpreters; they would reread (and then
ignore) the comments every time they executed a given part of the program.
They had no initial translator.

� The typical Fortran implementation comes close to pure compilation. TheEXAMPLE 1.8
Library routines and linking compiler translates Fortran source into machine language. Usually, however,

it counts on the existence of a library of subroutines that are not part of the
original program. Examples include mathematical functions (sin, cos, log,
etc.) and I/O. The compiler relies on a separate program, known as a linker, to
merge the appropriate library routines into the final program:

In some sense, one may think of the library routines as extensions to the hard-
ware instruction set. The compiler can then be thought of as generating code
for a virtual machine that includes the capabilities of both the hardware and
the library.

In a more literal sense, one can find interpretation in the Fortran routines
for formatted output. Fortran permits the use of format statements that con-
trol the alignment of output in columns, the number of significant digits and
type of scientific notation for floating-point numbers, inclusion/suppression
of leading zeros, and so on. Programs can compute their own formats on the
fly. The output library routines include a format interpreter. A similar inter-
preter can be found in the printf routine of C and its descendants. �

� Many compilers generate assembly language instead of machine language.EXAMPLE 1.9
Post-compilation assembly This convention facilitates debugging, since assembly language is easier for

people to read, and isolates the compiler from changes in the format of ma-
chine language files that may be mandated by new releases of the operating
system (only the assembler must be changed, and it is shared by many com-
pilers).
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1.4 Compilation and Interpretation 17

�

� Compilers for C (and for many other languages running under Unix) beginEXAMPLE 1.10
The C preprocessor with a preprocessor that removes comments and expands macros. The pre-

processor can also be instructed to delete portions of the code itself, providing
a conditional compilation facility that allows several versions of a program to
be built from the same source.

�

� C++ implementations based on the early AT&T compiler actually generatedEXAMPLE 1.11
Source-to-source
translation (C++)

an intermediate program in C, instead of in assembly language. This C++
compiler was indeed a true compiler: it performed a complete analysis of the
syntax and semantics of the C++ source program, and with very few excep-
tions generated all of the error messages that a programmer would see prior
to running the program. In fact, programmers were generally unaware that
the C compiler was being used behind the scenes. The C++ compiler did
not invoke the C compiler unless it had generated C code that would pass
through the second round of compilation without producing any error mes-
sages.
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18 Chapter 1 Introduction

Occasionally one would hear the C++ compiler referred to as a preprocessor,
presumably because it generated high-level output that was in turn compiled.
I consider this a misuse of the term: compilers attempt to “understand” their
source; preprocessors do not. Preprocessors perform transformations based
on simple pattern matching, and may well produce output that will generate
error messages when run through a subsequent stage of translation. �

� Many early Pascal compilers were built around a set of tools distributed byEXAMPLE 1.12
Bootstrapping Niklaus Wirth. These included the following.

– A Pascal compiler, written in Pascal, that would generate output in P-code,
a simple stack-based language

– The same compiler, already translated into P-code

– A P-code interpreter, written in Pascal

To get Pascal up and running on a local machine, the user of the tool set
needed only to translate the P-code interpreter (by hand) into some locally
available language. This translation was not a difficult task; the interpreter
was small. By running the P-code version of the compiler on top of the P-code
interpreter, one could then compile arbitrary Pascal programs into P-code,
which could in turn be run on the interpreter. To get a faster implementation,
one could modify the Pascal version of the Pascal compiler to generate a lo-
cally available variety of assembly or machine language, instead of generating
P-code (a somewhat more difficult task). This compiler could then be “run
through itself” in a process known as bootstrapping, a term derived from the
intentionally ridiculous notion of lifting oneself off the ground by pulling on
one’s bootstraps.
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1.4 Compilation and Interpretation 19

At this point, the P-code interpreter and the P-code version of the Pascal com-
piler could simply be thrown away. More often, however, programmers would
choose to keep these tools around. The P-code version of a program tends
to be significantly smaller than its machine language counterpart. On a circa
1970 machine, the savings in memory and disk requirements could really be
important. Moreover, as noted near the beginning of this section, an inter-
preter will often provide better run-time diagnostics than will the output of
a compiler. Finally, an interpreter allows a program to be rerun immediately
after modification, without waiting for recompilation—a feature that can be
particularly valuable during program development. Some of the best pro-
gramming environments for imperative languages include both a compiler
and an interpreter. �

DESIGN & IMPLEMENTATION

The early success of Pascal
The P-code based implementation of Pascal is largely responsible for the lan-
guage’s remarkable success in academic circles in the 1970s. No single hard-
ware platform or operating system of that era dominated the computer land-
scape the way the x86, Linux, and Windows do today.7 Wirth’s toolkit made
it possible to get an implementation of Pascal up and running on almost any
platform in a week or so. It was one of the first great successes in system porta-
bility.

7 Throughout this book we will use the term “x86” to refer to the instruction set architecture of the
Intel 8086 and its descendants, including the various Pentium processors. Intel calls this archi-
tecture the IA-32, but x86 is a more generic term that encompasses the offerings of competitors
such as AMD as well.
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� One will sometimes find compilers for languages (e.g., Lisp, Prolog, Smalltalk,EXAMPLE 1.13
Compiling interpreted
languages

etc.) that permit a lot of late binding and are traditionally interpreted. These
compilers must be prepared, in the general case, to generate code that per-
forms much of the work of an interpreter, or that makes calls into a library
that does that work instead. In important special cases, however, the compiler
can generate code that makes reasonable assumptions about decisions that
won’t be finalized until run time. If these assumptions prove to be valid the
code will run very fast. If the assumptions are not correct, a dynamic check
will discover the inconsistency, and revert to the interpreter. �

� In some cases a programming system may deliberately delay compilation untilEXAMPLE 1.14
Dynamic and just-in-time
compilation

the last possible moment. One example occurs in implementations of Lisp or
Prolog that invoke the compiler on the fly, to translate newly created source
into machine language, or to optimize the code for a particular input set. An-
other example occurs in implementations of Java. The Java language defini-
tion defines a machine-independent intermediate form known as byte code.
Byte code is the standard format for distribution of Java programs; it allows
programs to be transferred easily over the Internet and then run on any plat-
form. The first Java implementations were based on byte-code interpreters,
but more recent (faster) implementations employ a just-in-time compiler that
translates byte code into machine language immediately before each execution
of the program. C#, similarly, is intended for just-in-time translation. The
main C# compiler produces .NET Common Intermediate Language (CIL),
which is then translated into machine code immediately prior to execution.
CIL is deliberately language independent, so it can be used for code produced
by a variety of front-end compilers. �

� On some machines (particularly those designed before the mid-1980s), theEXAMPLE 1.15
Microcode (firmware) assembly-level instruction set is not actually implemented in hardware but in

fact runs on an interpreter. The interpreter is written in low-level instructions
called microcode (or firmware), which is stored in read-only memory and ex-
ecuted by the hardware. Microcode and microprogramming are considered
further in Section 5.4.1. �

As some of these examples make clear, a compiler does not necessarily trans-
late from a high-level language into machine language. It is not uncommon
for compilers, especially prototypes, to generate C as output. A little farther
afield, text formatters like TEX and troff are actually compilers, translating high-
level document descriptions into commands for a laser printer or phototypeset-
ter. (Many laser printers themselves incorporate interpreters for the Postscript
page-description language.) Query language processors for database systems are
also compilers, translating languages like SQL into primitive operations on files.
There are even compilers that translate logic-level circuit specifications into pho-
tographic masks for computer chips. Though the focus in this book is on im-
perative programming languages, the term “compilation” applies whenever we
translate automatically from one nontrivial language to another, with full analy-
sis of the meaning of the input.
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1.5 Programming Environments

Compilers and interpreters do not exist in isolation. Programmers are assisted
in their work by a host of other tools. Assemblers, debuggers, preprocessors, and
linkers were mentioned earlier. Editors are familiar to every programmer. They
may be assisted by cross-referencing facilities that allow the programmer to find
the point at which an object is defined, given a point at which it is used. Pretty
printers help enforce formatting conventions. Style checkers enforce syntactic or
semantic conventions that may be tighter than those enforced by the compiler
(see Exploration 1.11). Configuration management tools help keep track of de-
pendences among the (many versions of) separately compiled modules in a large
software system. Perusal tools exist not only for text but also for intermediate
languages that may be stored in binary. Profilers and other performance analysis
tools often work in conjunction with debuggers to help identify the pieces of a
program that consume the bulk of its computation time.

In older programming environments, tools may be executed individually, at
the explicit request of the user. If a running program terminates abnormally with
a “bus error” (invalid address) message, for example, the user may choose to
invoke a debugger to examine the “core” file dumped by the operating system.
He or she may then attempt to identify the program bug by setting breakpoints,
enabling tracing, and so on, and running the program again under the control of
the debugger. Once the bug is found, the user will invoke the editor to make
an appropriate change. He or she will then recompile the modified program,
possibly with the help of a configuration manager.

More recent programming environments provide much more integrated
tools. When an invalid address error occurs in an integrated environment, a new
window is likely to appear on the user’s screen, with the line of source code at
which the error occurred highlighted. Breakpoints and tracing can then be set in
this window without explicitly invoking a debugger. Changes to the source can
be made without explicitly invoking an editor. The editor may also incorporate
knowledge of the language syntax, providing templates for all the standard con-
trol structures, and checking syntax as it is typed in. If the user asks to rerun
the program after making changes, a new version may be built without explicitly
invoking the compiler or configuration manager.

DESIGN & IMPLEMENTATION

Powerful development environments
Sophisticated development environments can be a two-edged sword. The
quality of the Common Lisp environment has arguably contributed to its
widespread acceptance. On the other hand, the particularity of the graphical
environment for Smalltalk (with its insistence on specific fonts, window styles,
etc.) has made it difficult to port the language to systems accessed through a
textual interface, or to graphical systems with a different “look and feel.”
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Integrated environments have been developed for a variety of languages and
systems. They are fundamental to Smalltalk—it is nearly impossible to separate
the language from its graphical environment—and are widely used with Com-
mon Lisp. They are common on personal computers; examples include the Vi-
sual Studio environment from Microsoft and the Project Builder environment
from Apple. Several similar commercial and open source environments are avail-
able for Unix, and much of the appearance of integration can be achieved within
sophisticated editors such as emacs.

CHECK YOUR UNDERSTANDING

10. Explain the distinction between interpretation and compilation. What are the
comparative advantages and disadvantages of the two approaches?

11. Is Java compiled or interpreted (or both)? How do you know?

12. What is the difference between a compiler and a preprocessor?

13. What was the intermediate form employed by the original AT&T C++ com-
piler?

14. What is P-code?

15. What is bootstrapping?

16. What is a just-in-time compiler?

17. Name two languages in which a program can write new pieces of itself “on-
the-fly.”

18. Briefly describe three “unconventional” compilers—compilers whose pur-
pose is not to prepare a high-level program for execution on a microproces-
sor.

19. Describe six kinds of tools that commonly support the work of a compiler
within a larger programming environment.

1.6 An Overview of Compilation

Compilers are among the most well-studied types of computer programs. In aEXAMPLE 1.16
Phases of compilation typical compiler, compilation proceeds through a series of well-defined phases,

shown in Figure 1.2. Each phase discovers information of use to later phases,
or transforms the program into a form that is more useful to the subsequent
phase. �

The first few phases (up through semantic analysis) serve to figure out the
meaning of the source program. They are sometimes called the front end of the
compiler. The last few phases serve to construct an equivalent target program.
They are sometimes called the back end of the compiler. Many compiler phases
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Figure 1.2 Phases of compilation. Phases are listed on the right and the forms in which
information is passed between phases are listed on the left. The symbol table serves throughout
compilation as a repository for information about identifiers.

can be created automatically from a formal description of the source and/or tar-
get languages.

One will sometimes hear compilation described as a series of passes. A pass
is a phase or set of phases that is serialized with respect to the rest of compila-
tion: it does not start until previous phases have completed, and it finishes before
any subsequent phases start. If desired, a pass may be written as a separate pro-
gram, reading its input from a file and writing its output to a file. Compilers are
commonly divided into passes so that the front end may be shared by compilers
for more than one machine (target language), and so that the back end may be
shared by compilers for more than one source language. Prior to the dramatic in-
creases in memory sizes of the mid- to late 1980s, compilers were also sometimes
divided into passes to minimize memory usage: as each pass completed, the next
could reuse its code space.

1.6.1 Lexical and Syntax Analysis

Consider the greatest common divisor (GCD) program introduced at the begin-EXAMPLE 1.17
GCD program in Pascal ning of this chapter. Written in Pascal, the program might look like this:8

8 We use Pascal for this example because its lexical and syntactic structure is significantly simpler
than that of most modern imperative languages.
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program gcd(input, output);

var i, j : integer;

begin

read(i, j);

while i <> j do

if i > j then i := i - j

else j := j - i;

writeln(i)

end. �
Scanning and parsing serve to recognize the structure of the program, withoutEXAMPLE 1.18

GCD program tokens regard to its meaning. The scanner reads characters (‘p’, ‘r’, ‘o’, ‘g’, ‘r’, ‘a’, ‘m’, ‘ ’,
‘g’, ‘c’, ‘d’, etc.) and groups them into tokens, which are the smallest meaningful
units of the program. In our example, the tokens are

program gcd ( input , output ) ;

var i , j : integer ; begin

read ( i , j ) ; while

i <> j do if i > j

then i := i - j else j

:= j - i ; writeln ( i

) end . �
Scanning is also known as lexical analysis. The principal purpose of the scan-

ner is to simplify the task of the parser by reducing the size of the input (there
are many more characters than tokens) and by removing extraneous characters.
The scanner also typically removes comments, produces a listing if desired, and
tags tokens with line and column numbers to make it easier to generate good di-
agnostics in later phases. One could design a parser to take characters instead of
tokens as input—dispensing with the scanner—but the result would be awkward
and slow.

Parsing organizes tokens into a parse tree that represents higher-level con-EXAMPLE 1.19
Context-free grammar and
parsing

structs in terms of their constituents. The ways in which these constituents com-
bine are defined by a set of potentially recursive rules known as a context-free
grammar. For example, we know that a Pascal program consists of the keyword
program, followed by an identifier (the program name), a parenthesized list of
files, a semicolon, a series of definitions, and the main begin . . . end block, ter-
minated by a period:

program −→ PROGRAM id ( id more ids ) ; block .

where

block −→ labels constants types variables subroutines BEGIN stmt
more stmts END

and

more ids −→ , id more ids
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or

more ids −→ ε

Here ε represents the empty string; it indicates that more ids can simply be
deleted. Many more grammar rules are needed, of course, to explain the full
structure of a program. �

A context-free grammar is said to define the syntax of the language; parsing is
therefore known as syntactic analysis. There are many possible grammars for Pas-
cal (an infinite number, in fact); the fragment shown above is based loosely on the
“circles-and-arrows” syntax diagrams found in the original Pascal text [JW91]. AEXAMPLE 1.20

GCD program parse tree full parse tree for our GCD program (based on a full grammar not shown here)
appears in Figure 1.3. Much of the complexity of this figure stems from (1) the
use of such artificial “constructs” as more stmts and more exprs to represent lists
of arbitrary length and (2) the use of the equally artificial term, factor, and so on,
to capture precedence and associativity in arithmetic expressions. Grammars and
parse trees will be covered in more detail in Chapter 2. �

In the process of scanning and parsing, the compiler checks to see that all of the
program’s tokens are well formed and that the sequence of tokens conforms to the
syntax defined by the context-free grammar. Any malformed tokens (e.g., 123abc
or $@foo in Pascal) should cause the scanner to produce an error message. Any
syntactically invalid token sequence (e.g., A := B C D in Pascal) should lead to
an error message from the parser.

1.6.2 Semantic Analysis and Intermediate Code Generation

Semantic analysis is the discovery of meaning in a program. The semantic analy-
sis phase of compilation recognizes when multiple occurrences of the same
identifier are meant to refer to the same program entity, and ensures that the
uses are consistent. In most languages the semantic analyzer tracks the types of
both identifiers and expressions, both to verify consistent usage and to guide the
generation of code in later phases.

To assist in its work, the semantic analyzer typically builds and maintains a
symbol table data structure that maps each identifier to the information known
about it. Among other things, this information includes the identifier’s type, in-
ternal structure (if any), and scope (the portion of the program in which it is
valid).

Using the symbol table, the semantic analyzer enforces a large variety of rules
that are not captured by the hierarchical structure of the context-free grammar
and the parse tree. For example, it checks to make sure that

� Every identifier is declared before it is used.

� No identifier is used in an inappropriate context (calling an integer as a sub-
routine, adding a string to an integer, referencing a field of the wrong type of
record, etc.).

� Subroutine calls provide the correct number and types of arguments.
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Figure 1.3 Parse tree for the GCD program. The symbol ε represents the empty string. The remarkable level of complexity
in this figure is an artifact of having to fit the (much simpler) source code into the hierarchical structure of a context-free
grammar.
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� Labels on the arms of a case statement are distinct constants.

� Every function contains at least one statement that specifies a return value.

In many compilers, the work of the semantic analyzer takes the form of seman-
tic action routines, invoked by the parser when it realizes that it has reached a
particular point within a production.

Of course, not all semantic rules can be checked at compile time. Those that
can are referred to as the static semantics of the language. Those that must be
checked at run time are referred to as the dynamic semantics of the language.
Examples of rules that must often be checked at run time include

� Variables are never used in an expression unless they have been given a value.9

� Pointers are never dereferenced unless they refer to a valid object.

� Array subscript expressions lie within the bounds of the array.

� Arithmetic operations do not overflow.

When it cannot enforce rules statically, a compiler will often produce code
to perform appropriate checks at run time, aborting the program or generat-
ing an exception if one of the checks then fails. (Exceptions will be discussed in
Section 8.5.) Some rules, unfortunately, may be unacceptably expensive or im-
possible to enforce, and the language implementation may simply fail to check
them. In Ada, a program that breaks such a rule is said to be erroneous; in C its
behavior is said to be undefined.

A parse tree is sometimes known as a concrete syntax tree, because it demon-
strates, completely and concretely, how a particular sequence of tokens can be
derived under the rules of the context-free grammar. Once we know that a token
sequence is valid, however, much of the information in the parse tree is irrele-
vant to further phases of compilation. In the process of checking static semantic
rules, the semantic analyzer typically transforms the parse tree into an abstractEXAMPLE 1.21

GCD program abstract
syntax tree

syntax tree (otherwise known as an AST, or simply a syntax tree) by removing
most of the “artificial” nodes in the tree’s interior. The semantic analyzer also
annotates the remaining nodes with useful information, such as pointers from
identifiers to their symbol table entries. The annotations attached to a particular
node are known as its attributes. A syntax tree for our GCD program is shown in
Figure 1.4. �

In many compilers, the annotated syntax tree constitutes the intermediate
form that is passed from the front end to the back end. In other compilers, se-
mantic analysis ends with a traversal of the tree that generates some other in-
termediate form. Often this alternative form resembles assembly language for an
extremely simple idealized machine. In a suite of related compilers, the front ends

9 As we shall see in Section 6.1.3, Java and C# actually do enforce initialization at compile time, but
only by adopting a conservative set of rules for “definite assignment,” which outlaw programs for
which correctness is difficult or impossible to verify at compile time.
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Figure 1.4 Syntax tree and symbol table for the GCD program. Unlike Figure 1.3, the syntax
tree retains just the essential structure of the program, omitting detail that was needed only to
drive the parsing algorithm.

for several languages and the back ends for several machines would share a com-
mon intermediate form.

1.6.3 Target Code Generation

The code generation phase of a compiler translates the intermediate form into
the target language. Given the information contained in the syntax tree, gen-
erating correct code is usually not a difficult task (generating good code is
harder, as we shall see in Section 1.6.4). To generate assembly or machine lan-EXAMPLE 1.22

GCD program assembly
code

guage, the code generator traverses the symbol table to assign locations to vari-
ables, and then traverses the syntax tree, generating loads and stores for vari-
able references, interspersed with appropriate arithmetic operations, tests, and
branches. Naive code for our GCD example appears in Figure 1.5, in MIPS as-
sembly language. It was generated automatically by a simple pedagogical com-
piler.

The assembly language mnemonics may appear a bit cryptic, but the com-
ments on each line (not generated by the compiler!) should make the correspon-
dence between Figures 1.4 and 1.5 generally apparent. A few hints: sp, ra, at, a0,
v0, and t0–t9 are registers (special storage locations, limited in number, that can
be accessed very quickly). 28(sp) refers to the memory location 28 bytes beyond
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addiu sp,sp,-32 # reserve room for local variables

sw ra,20(sp) # save return address

jal getint # read

nop

sw v0,28(sp) # store i

jal getint # read

nop

sw v0,24(sp) # store j

lw t6,28(sp) # load i

lw t7,24(sp) # load j

nop

beq t6,t7,D # branch if i = j

nop

A: lw t8,28(sp) # load i

lw t9,24(sp) # load j

nop

slt at,t9,t8 # determine whether j < i

beq at,zero,B # branch if not

nop

lw t0,28(sp) # load i

lw t1,24(sp) # load j

nop

subu t2,t0,t1 # t2 := i - j

sw t2,28(sp) # store i

b C

nop

B: lw t3,24(sp) # load j

lw t4,28(sp) # load i

nop

subu t5,t3,t4 # t5 := j - i

sw t5,24(sp) # store j

C: lw t6,28(sp) # load i

lw t7,24(sp) # load j

nop

bne t6,t7,A # branch if i <> j

nop

D: lw a0,28(sp) # load i

jal putint # writeln

nop

move v0,zero # exit status for program

b E # branch to E

nop

b E # branch to E

nop

E: lw ra,20(sp) # retrieve return address

addiu sp,sp,32 # deallocate space for local variables

jr ra # return to operating system

nop

Figure 1.5 Naive MIPS assembly language for the GCD program.
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the location whose address is in register sp. Jal is a subroutine call (“jump and
link”); the first argument is passed in register a0, and the return value comes back
in register v0. Nop is a “no-op”; it does no useful work but delays the program
for one time cycle, allowing a two-cycle load or branch instruction to complete
(branch and load delays were a common feature in early RISC machines; we will
consider them in Section 5.5.1). Arithmetic operations generally operate on the
second and third arguments, and put their result in the first. �

Often a code generator will save the symbol table for later use by a symbolic
debugger—for example, by including it as comments or some other nonexe-
cutable part of the target code.

1.6.4 Code Improvement

Code improvement is often referred to as optimization, though it seldom makes
anything optimal in any absolute sense. It is an optional phase of compilation
whose goal is to transform a program into a new version that computes the same
result more efficiently—more quickly or using less memory, or both.

Some improvements are machine independent. These can be performed as
transformations on the intermediate form. Other improvements require an un-
derstanding of the target machine (or of whatever will execute the program in
the target language). These must be performed as transformations on the tar-
get program. Thus code improvement often appears as two additional phases
of compilation, one immediately after semantic analysis and intermediate code
generation, the other immediately after target code generation.

Applying a good code improver to the code in Figure 1.5 produces the codeEXAMPLE 1.23
GCD program
optimization

shown in Example 1.2 (page 3). Comparing the two programs, we can see that
the improved version is quite a lot shorter. Conspicuously absent are most of the
loads and stores. The machine-independent code improver is able to verify that i
and j can be kept in registers throughout the execution of the main loop (this
would not have been the case if, for example, the loop contained a call to a sub-
routine that might reuse those registers, or that might try to modify i or j). The
machine-specific code improver is then able to assign i and j to actual registers
of the target machine. In our example the machine-specific improver is also able
to schedule (reorder) instructions to eliminate several of the no-ops. Careful ex-
amination of the instructions following the loads and branches will reveal that
they can be executed safely even when the load or branch has not yet completed.
For modern microprocessor architectures, particularly those with so-called su-
perscalar RISC instruction sets (ones in which separate functional units can exe-
cute multiple instructions simultaneously), compilers can usually generate better
code than can human assembly language programmers. �
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CHECK YOUR UNDERSTANDING

20. List the principal phases of compilation, and describe the work performed by
each.

21. Describe the form in which a program is passed from the scanner to the
parser; from the parser to the semantic analyzer; from the semantic analyzer
to the intermediate code generator.

22. What distinguishes the front end of a compiler from the back end?

23. What is the difference between a phase and a pass of compilation? Under what
circumstances does it make sense for a compiler to have multiple passes?

24. What is the purpose of the compiler’s symbol table?

25. What is the difference between static and dynamic semantics?

26. On modern machines, do assembly language programmers still tend to write
better code than a good compiler can? Why or why not?

1.7 Summary and Concluding Remarks

In this chapter we introduced the study of programming language design and
implementation. We considered why there are so many languages, what makes
them successful or unsuccessful, how they may be categorized for study, and what
benefits the reader is likely to gain from that study. We noted that language design
and language implementation are intimately related to one another. Obviously an
implementation must conform to the rules of the language. At the same time, a
language designer must consider how easy or difficult it will be to implement
various features, and what sort of performance is likely to result for programs
that use those features.

Language implementations are commonly differentiated into those based on
interpretation and those based on compilation. We noted, however, that the dif-
ference between these approaches is fuzzy, and that most implementations in-
clude a bit of each. As a general rule, we say that a language is compiled if exe-
cution is preceded by a translation step that (1) fully analyzes both the structure
(syntax) and meaning (semantics) of the program and (2) produces an equiva-
lent program in a significantly different form. The bulk of the implementation
material in this book pertains to compilation.

Compilers are generally structured as a series of phases. The first few phases—
scanning, parsing, and semantic analysis—serve to analyze the source pro-
gram. Collectively these phases are known as the compiler’s front end. The
final few phases—intermediate code generation, code improvement, and tar-
get code generation—are known as the back end. They serve to build a tar-
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get program—preferably a fast one—whose semantics match those of the
source.

Chapters 3, 6, 7, 8, and 9 form the core of the rest of this book. They cover fun-
damental issues of language design, both from the point of view of the program-
mer and from the point of view of the language implementor. To support the
discussion of implementations, Chapters 2 and 4 describe compiler front ends
in more detail than has been possible in this introduction. Chapter 5 provides
an overview of assembly-level architecture. Chapters 14 and 15 discuss compiler
back ends, including assemblers and linkers. Additional language paradigms are
covered in Chapters 10 through 13. Appendix A lists the principal programming
languages mentioned in the text, together with a genealogical chart and biblio-
graphic references. Appendix B contains a list of “Design and Implementation”
sidebars. Appendix C contains a list of numbered examples.

1.8 Exercises

1.1 Errors in a computer program can be classified according to when they are
detected and, if they are detected at compile time, what part of the compiler
detects them. Using your favorite imperative language, give an example of
each of the following.
(a) A lexical error, detected by the scanner

(b) A syntax error, detected by the parser

(c) A static semantic error, detected by semantic analysis

(d) A dynamic semantic error, detected by code generated by the compiler

(e) An error that the compiler can neither catch nor easily generate code to
catch (this should be a violation of the language definition, not just a
program bug)

1.2 Algol family languages are typically compiled, while Lisp family languages, in
which many issues cannot be settled until run time, are typically interpreted.
Is interpretation simply what one “has to do” when compilation is infeasible,
or are there actually some advantages to interpreting a language, even when
a compiler is available?

1.3 The gcd program of Example 1.17 might also be written

program gcd(input, output);

var i, j : integer;

begin

read(i, j);

while i <> j do

if i > j then i := i mod j

else j := j mod i;

writeln(i)

end.

 EBSCOhost - printed on 4/3/2022 4:20 PM via BIBLIOTECA DIGITAL ITESM SISTEMA. All use subject to https://www.ebsco.com/terms-of-use



1.9 Explorations 33

Does this program compute the same result? If not, can you fix it? Under
what circumstances would you expect one or the other to be faster?

1.4 In your local implementation of C, what is the limit on the size of integers?
What happens in the event of arithmetic overflow? What are the implications
of size limits on the portability of programs from one machine/compiler to
another? How do the answers to these questions differ for Java? For Ada? For
Pascal? For Scheme? (You may need to find a manual.)

1.5 The Unix make utility allows the programmer to specify dependences among
the separately compiled pieces of a program. If file A depends on file B and
file B is modified, make deduces that A must be recompiled, in case any of
the changes to B would affect the code produced for A. How accurate is this
sort of dependence management? Under what circumstances will it lead to
unnecessary work? Under what circumstances will it fail to recompile some-
thing that needs to be recompiled?

1.6 Why is it difficult to tell whether a program is correct? How do you go about
finding bugs in your code? What kinds of bugs are revealed by testing? What
kinds of bugs are not? (For more formal notions of program correctness, see
the bibliographic notes at the end of Chapter 4.)

1.9 Explorations

1.7 (a) What was the first programming language you learned? If you chose it,
why did you do so? If it was chosen for you by others, why do you think
they chose it? What parts of the language did you find the most difficult
to learn?

(b) For the language with which you are most familiar (this may or may
not be the first one you learned), list three things you wish had been
differently designed. Why do you think they were designed the way they
were? How would you fix them if you had the chance to do it over? Would
there be any negative consequences—for example, in terms of compiler
complexity or program execution speed?

1.8 Get together with a classmate whose principal programming experience is
with a language in a different category of Figure 1.1. (If your experience is
mostly in C, for example, you might search out someone with experience in
Lisp.) Compare notes. What are the easiest and most difficult aspects of pro-
gramming, in each of your experiences? Pick some simple problem (e.g., sort-
ing, or identification of connected components in a graph) and solve it using
each of your favorite languages. Which solution is more elegant (do the two
of you agree)? Which is faster? Why?
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1.9 (a) If you have access to a Unix system, compile a simple program with
the -S command-line flag. Add comments to the resulting assembly
language file to explain the purpose of each instruction.

(b) Now use the -o command-line flag to generate a relocatable object file.
Using appropriate local tools (look in particular for nm, objdump, or
a symbolic debugger like gdb or dbx), identify the machine language
corresponding to each line of assembler.

(c) Using nm, objdump, or a similar tool, identify the undefined external
symbols in your object file. Now run the compiler to completion, to
produce an executable file. Finally, run nm or objdump again to see what
has happened to the symbols in part (b). Where did they come from,
and how did the linker resolve them?

(d) Run the compiler to completion one more time, using the -v com-
mand-line flag. You should see messages describing the various sub-
programs invoked during the compilation process (some compilers use
a different letter for this option; check the man page). The subprograms
may include a preprocessor, separate passes of the compiler itself (of-
ten two), probably an assembler, and the linker. If possible, run these
subprograms yourself, individually. Which of them produce the files
described in the previous subquestions? Explain the purpose of the var-
ious command-line flags with which the subprograms were invoked.

1.10 Write a program that commits a dynamic semantic error (e.g., division by
zero, access off the end of an array, dereference of a nil pointer). What
happens when you run this program? Does the compiler give you options
to control what happens? Devise an experiment to evaluate the cost of run-
time semantic checks. If possible, try this exercise with more than one lan-
guage or compiler.

1.11 C has a reputation for being a relatively “unsafe” high-level language. In
particular, it allows the programmer to mix operands of different sizes and
types in many more ways than do its “safer” cousins. The Unix lint utility
can be used to search for potentially unsafe constructs in C programs. In ef-
fect, many of the rules that are enforced by the compiler in other languages
are optional in C and are enforced (if desired) by a separate program. What
do you think of this approach? Is it a good idea? Why or why not?

1.12 Using an Internet search engine or magazine indexing service, read up on
the history of Java and C#, including the conflict between Sun and Mi-
crosoft over Java standardization. Some have claimed that C# is, at least
in part, Microsoft’s attempt to kill Java. Defend or refute this claim.
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1.10 Bibliographic Notes

The compiler-oriented chapters of this book attempt to convey a sense of what
the compiler does, rather than explaining how to build one. A much greater level
of detail can be found in other texts. Leading options include the work of Cooper
and Torczon [CT04], Grune et al. [GBJL01], and Appel [App97]. The older texts
by Aho, Sethi, and Ullman [ASU86] and Fischer and LeBlanc [FL88] were for
many years the standards in the field, but have grown somewhat dated. High-
quality texts on programming language design include those of Louden [Lou03],
Sebesta [Seb04], and Sethi [Set96].

Some of the best information on the history of programming languages can be
found in the proceedings of conferences sponsored by the Association for Com-
puting Machinery in 1978 and 1993 [Wex78, Ass93]. Another excellent reference
is Horowitz’s 1987 text [Hor87]. A broader range of historical material can be
found in the quarterly IEEE Annals of the History of Computing. Given the impor-
tance of personal taste in programming language design, it is inevitable that some
language comparisons should be marked by strongly worded opinions. Examples
include the writings of Dijkstra [Dij82], Hoare [Hoa81], Kernighan [Ker81], and
Wirth [Wir85a].

Most personal computer software development now takes place in integrated
programming environments. Influential precursors to these environments in-
clude the Genera Common Lisp environment from Symbolics Corp. [WMWM87]
and the Smalltalk [Gol84], Interlisp [TM81], and Cedar [SZBH86] environments
at the Xerox Palo Alto Research Center.
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